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LETTER TO THE EDITOR

Quartum mechanics of relativistic particles in maltiply
connected spaces and the Aharonov—-Bohm effect
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t Instituto de Fisica, Universidads de Sio Paulo. Caixa Postal 20516, CEP 01498, Sio
Pauio, SP, Braz:l
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Abstract. We consider the motion of free relativishic particles m multiply connected spaces
We show that «f one of the spatial dimensions has the topology of a circle then the
D-dimenstonal spacetime 15 compactified to £2—1 dimensions and the particie mass
increases by an amount which 15 proportional to 2 quantum phase factor and inversely
proporiiotal to the radis of the crcle. This provides a new non-pertyrbative mechamsm
of mass generattoni We also consider the relativistic Abaranov-Bohm effect and we show
that the propagator 1s sunilar in form to the non-relativistic one. The propagators are
calenlated without any approximation in both situzitons

Quantum mechanics in multiply connected spaces is an old subject in theoretical
physics {1-4] and it is essential for 2 proper understanding of the Aharonov-Bohm
effect [5], fractional statistics {6], topological field theories {7] and probably high-T,
superconductivity 181

In the path integral framework the multiconnected character of the manifold does
appear when we consider all paths which-belong to distinct homotopic classes. Then
the propagaticn amplitude to go from the point X, to the point X, is given by

G[XZ, Xl.I:ZEnGn[X?.sXI] {1)

where E, is some unitary representation of the ath class of homotopy of the covering
group of the manifold.

In the case of non-relativistic particles this problem has been studied by several
authors [2,3,9-11] who have clarified the relation between the topological term af
which we can add to the Lagrangian and the multivaiued character of the wavefunction,

These aspects, together with 2 rigorous mathematical treatment of guantum
mechanics in multiply connected spaces [2], were essential for recent developments
in fractional statistics and topological quanium field theories.

However, despite the large amount of work in this area, there is no discussion, to
our knowledge, of the motion of relativistic particles in multiply connected spaces.
Probably this gap is due to the fact that only receniily a complete understanding of
the quantization of the relativistic particle in terms of path integrals was reached. The

crucial point is that the reparametrization invariance makes the path integral non-trivial
§ Paruiaily supported by CNPy
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and the Faddeev-Popov [12] or Batalin-Fradkin-Vilkovisky [13] techmque must
necessarily be used.

Technically the problem of quantization of a generally covariant theory has to deal
with the trouble of how to fix the gauge. The gauge fixing, a5 was discussed some time
ago by Teitelboim [14], must be consistent with the complete fixation of the gauge
parameters at the initial and final points of the trajectory. Therefore, in this class of
theories, we are led naturally to non-canonical gauge choices, like the proper time gauge.

The purpose of this paper is fo discuss two examples involving free relativistic
particles moving on spaces with non-trivial topology using the path integral method.
In particular, the analogous of the problem solved by Schulman [1,3] for a free
non-relativistic particle moving on & space with (he topology of a circle S will be
solved exphcitly in the proper tine gauge, We will show that when we impose this
topology the propagator of the relativistic particle is compactified from D to D-1
dimensions generating a mass proportional to the inverse radius of the circle and
proportional to a guantum phase. This provides a new mechanism of dynamical mass
generation by non-perturbative mathods.

We then consider the relativistic Aharonov- Bohm effect. We will present a procedure
which allow us to obtain an explicit expression for the propagator in momentum space.
Finally we compare our results with the non-relativistic ones showing that the interfer-
ence pattern is the same in both cases.

Let us consider a relativistic particle with mass m in a D-dimensional spacetime
described by the following action

5= j " dr(P*X, - Nov) @)

where N is the Lagrange multiplier and 3 is the first class constraint defined by
H=HP+m) (3)

and P, is the momentum conjugated to X,.
The reparametrization invariance is given by the following transformations

8X*" =gP*
8P* =10 (4}
SN=¢
which leave invariant the action (2} if at the endpoints we have
e(t)==(1)=0. (5

As has been discussed in [14] a gauge choice compatible with (4} is the proper time
gauge
N=0. (6)

To quantize the theory we will use the path integral formalism. The propagation
amplitude for the pariicle to go from X to X, is

GLX,, X,] =j DN DX, DP* 5[ N1det(s2) exp(i J dr(PrX, - Nﬁi")). (7

]
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The formal expression (7) must be evaluated speufying the boundary conditions, i.e.
in this case the topology of S'.

Let us assume that the topology of §8' is imposed only 1n one of the coordipates,
say X' Then we have the boundary conditions

X% =X\ X%r)=X3
X'(e)=Xx, XYt,) = X3+ 2anl (8)
X'{r) =X, X'() =X}

where 1=2,..., D ~1, and [ is the radius of the circle and n an integer.

The path integral {7) can now be evaluated explicitly. Notice that in (7) the factor
8[ N1 states that only the zero mode (N(0)) of N(¢) contributes to the path integral
and therefore the functional measure PN can be replaced by an ordinary measure
dN(0} The mtegration limits for N(0), by causaiity requirements [14], 1s from 0 to
20. The Euclideznized determinant det(—a2) can be evaluated by using the -function
regularization after we impose that the eigenfunctions of —a2 vanish at the endpoints
of the trajectoryt, the result bemng det(—92) =At=1,—1,

Then (7) becomes

G Xs, X4} =J daT J 2xX, GP* exp(i J dr(P*X, - N(O)%’)) (9)

(i} n
whare T= N{(0}At In (9) we added a lower index n to G which means that G,[X;, X;]
is the propagation amplitude for the nth class of homotopy.

If we now write P“X, as (d/dt}(P*X,)— P*X, and we integrate on X, we get a
factor of 8] P,] which states that the momentum is conserved and aliows the functional
integral in £, to become an ordinary integral.

Using the boundary conditions (8) in order to evaluate the surface term, we get
that {9) becomes

D

. g
G.[X., X|}= j dT j. 1:) expliP*AX, + 2inaiP, —1TH)
o \27)

d” P exp(iP*AX, +2inli)

Tlem®  Pimi-ie (10)
where the factor ie was infroduced to guarantee the convergence of (9).
Using (1) we obtain the complete propagator as
d®P exp(1P*AX, +2inlP,))
GlX,, X\1=3LE, £ =,
[X:, Xi] E _{ (2m)® PP+m’—is an

Following the arguments presented by Schulman [1] the =, can be easily obtained
by observing that {11} depends only on the difference X,— X, and so it is easy to
shew that E, =e'™, where & is a phase whose origin is strictly quantic and induced

This has a natural explanation 1 the BFV formalism In fact to impose that the eigenfunctions of —a2

vamish at the endpoints of the tzajectory is equivalent to the imposition of homogeneous boundary conditions
for the ghosts
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by the non-trivial topology of the coordinate X'+, Consequently (11) is

= d°P exp1P*AX, +in(27IP, +8))
ol 2= 2 ,[(Zer)" Prmi—ie

e —oxt

dDP elF’""«l)&"l
=(2w}_[ B e Sl + 8]

e (—ib‘AX.) j dolp P "
P\ 2w (2w PP+ mt—-ie (12)

where now pu=49,2,..., D—1 Equation (12) is the propagator for a particle of mass
i’ =m?+8°/(2nl) moving in a (D —1)-dimensional spacetime with trivial topology
Therefore, by imposing a non-trivial tepology in one of the spatial coordinates of the
D-dimensional spacetime we generate a compactfication to D -1 dimensions. This
has no analogy with the non-relativistic ease. It is also not analogous to the Cremmer-
Scherk {15] compactification since our resuits are denved from a quantum phase &
and in this sense it is not equivalens to the compactification mechanism of the
Kaluza-Kletn theones [ 16] or string theories [17]. It also gives a new non-perturbative
mechaaism of mass genevation It would be very interesting to extend these ideas to
quantum field theorizst

We now consider the Aharonov-Bohm effect. This 1s a two-dimensional situation
where the clectron moves 1n a multiply connected space due to the presence of a
cylinder of infinite Iength filled with a magnetic field. The relativistic effects should
be observable by incieasing the velocity of the electron. However, it seems that there
1s no experimental investigation in this direction {20].

Topologically speaking the situation described in figure 1 15 not the most general
possible since the electrons can follow other paths, e g, going around the cylinder {see
figure 2), and the problem is how to mncorporate this into the path integral,

In principle it would be possible to extend the method developed by [nomota-Singh
{21] and Gerry-Singh [22] to solve the non-relativistic Aharonov-Bohm efiect using
the path integral However, it seems more conventent to write directly the path integral
for the relativistic problem and to factorize the corresponding integral 1 1ts space and
time components (regarding the position vector X*).

screen

sSource

Figure 1.

+ Here 5 is a quantum phase that depends on how the smgulaniy 1s constructed, e g 1f this singularity is
constructed with an infinte solenmd filled with a magnetic field (as wn the Aharonov-Bohm effect) this
phase can be interpreted as the magnetic flux

t The hterature about quantum field theories in multiply connected spaces is very restricted Perhaps the
first paper on this subject 15 due to Dowker [4]. More recently non-Abehan gauge theones on §' and 5%
were shown to have a dynamical mas. generation at the one loop level {18], the same as that occurnng in
the Schwinger modet [19]
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Figure 2.

The integral in X° can be solved easily and the spatial mntegrals can be evaluated
by using polar coordinates (see figure 3) as is done in [21] and [22]. Then, the formal
path integral for the nth class of homotopy 1 the proper time gauge has the following
form

G.[Xs, X\]1= J GN DX* det{ N) '8 N1det(N&’)

X ex; (ij-lzd'(‘—th2+12N)) (13)
A TGNt T2 Y )

The amplitude (13) is a Lagrangian expression. The factor det{N ') has been
incorporated to make the functional measure invariant under reparametrizations. It is
also easy to see, by using the {-function reguiarization, that det{ N32) 1s factorizable
and therefore the factors det(N ') and det(N} cancel among themselves As before
we have det{(—a7) = At

The factor 8] N'] allows us to replace the path mtegral in N by an ordinary integral
in N(0) with integration limits from 0 to . Then (13) becomes

oo ) sz o . [ _Xg
G,,[X:,X,]=J; dTexp(rT)J@X exp(l L dTZN{O})

L XI
x| @°Xx i| d . 4
.[ oxp( I ") as
To solve the integrals in X° and X we consider that they are formally equal to the

integrals for the non-relativistic particle inr one and twe dimensions with mass m=
N(0)™', So the X iategral is simply

1" fi(AXO)j
(21:-7') exp( T ’ (13)

source screen

]
b

Figure 3.
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The X integral 1s more complicated because we have to take into accouni that the
particle can go around the cylinder. This can be done and we refer to the papers [21]
and [22] for details (see also [23]). The result for the integral (14) is

1
G.[X,, X\]= J- dTJ d)l(z T)”z
im’T  (AX,Y i (R*+R™% RR’
Xexp( 3 -1 2,’? -r2 T Tn\(qb-i-zvm)) m( —5;—-)

where ¢ is the angle difference between R and R’ (see figure 2) and i, is the modified
Bessel function.

Following the same arguments ured earlier to determine Z,, in (1) we obtain the
complete propagator

° im*T (AX,)Y i (R*+ er))
GiXG, X ‘ T p - s
1%, M= d (2 7)3"2e ( 2 At 2 T

oK RI
x § {—p)lm el exp(—i(n+a)¢}.f;,,+,,|(§?_—) (16)

where in this case the phase is « = ¢®, where @ is the magnetic flux and e is the
electric charge. In (16) we made use of the identity

1,0x) = ()", (x).

Equation {16} can also be written explicitly in momentum space

G[ X5, X1 =J &£P j dT exp(iP"AX# —i ;(P2+ ml))
[}

x T (™ pleitat )6 ol ) (17)

Making the change of variables T = 1/z, using the identity
Ju—l(-x)"_jv-t-l{x) = 2Vx-,u(x)
(v arbitrary) and using the integral [24]

J’ dzz ' e*/* J,(B2) = 2J.(VaB) K, (VeB) Re(a)>0,5>0
L]
it follows that (16) has the following form

£ |a+e]| dJP N
G[X2s Xl]“hm E (—'"l_e"‘“+“)‘f’ J. __etF AX,

0w N+ al (27)
¥ (sl (¥ RR'pY + s gy (V RR )N K0y (V RRp)
+ Ky cujer(v RR'p}) (18)

with p = & —i(P*+m?).

We have lormulated the path integral quantization of 2 relativistic particle on a
spacetime with non-trivial topology and written explicitly expressions for the propa-
gators. For the free relativistic particle we have found a new dynamical non-perturbative
mechanism of mass generation and it would be very interesting to find an analogous
mechanism in quantum field theories.
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We aiso discussed the relaiivistic Aharonov-Bohin effect and calculated the propa-
gator. We remark that its form is the same as the non-relativistic one. If we write

3

GlXp XiJ= T (=)™l exp(=i(n+a)d) Finsu (19)

=0

we recover the relativistic propagator (17) for

=+ T . 4
Fiovo)= J- a*p L daT exp(iP"AX,‘—l E(Pz-{vm“))][,,m;(E},R—) (20)

while for the pon-relativistic case [23],

m 2mi riRR'
Frea=o CKP(T (R*+ R‘l))JIm.(T) (21)

2ari

where 7 is the time that the particle takes to go from X, to X,.

This fact shows that we have a universal form for the propagator of the Aharonov-
Bohm effect. If we had considered the relativistic spinning particle, for example, only
the factor F,,, in (19) would change. If we now apply the Poisson summation formula
to (19) and make a change of variables [25] we can rewrite {19) as

GIXy, X,]= L T,e ™ (22)

ar=—coo

where

+oo
T,.= I dA(—i)M e Ry, (23)
so that all dependence on the flux @ is in the exponential factor in (22). 'This means
then that the interference patrern will be the same whichever particle we take, relativistic,
spinning particle, etc. The interference pattern of the Aharonov-Bohm effect is aniversal
since it depends only on the magnetic flux.

Of course, this requires a note of caution, in fact, recently Hagen [26] has suggested
that the spin could modify the inteference pattern if the initial beam of particles is
polanzed. (Another dervation of this result based on the use of the conservation of
helicity is given in [27] } We also assumed that the eylinder 1s infinite in length but it
is known that a finite cylinder changes the usual results {28)].

JG was partially supported by MEC-CICYT.
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