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zaragma. spal" 
i Imbtuto de Firrca. Unwersidad: de Sia Paula. Caira Postal 20516. CEP 01498, SZo 
Pau10, SP, Braztl 
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Abzlract. We consider the motion of free re lat iv i~t i~  ~ ~ n t c l e ~  m multiply connected spacer 
We show that If  one of the spatial dimensions has the topology of a nrcle then the 
D-dimenrronal spacelime 15 urmpactified to 0 - 1  dimensions and the panicle mass 
increases hy an amount which 15 propoRl~nal to a quantum phase factor and inversely 
propo)rtioildl to the radius of the arcle. This pravcdes a new non-perturhative mechanism 
of mass generation We also consider the relativistic Aharanov-Bohm effect and we show 
that the propagattar IP similar in farm to the non-relatwisftc one. The propagators are 
calculated without any app~o~imatmn in bath sitrzlzons 

Quantum mechanics in multiply connected spaces is an old subject in theoretical 
physics [l-41 and it is essential for a proper understanding of the Aharonov-Bohm 
effect [Sj, fractional statistics [6] ,  topological field theories 171 end probably high-Tc 
supercondueti% ity j8]. 

In the path integral framework the multiconnected character of the manifold does 
appear when we consider all paths which-belong to distinct homotopic classes. 'Ihen 
the propagation amplitude to go from the point XI to the point X, is given by 

G[Xz. XJ=I: -jnGJXz, Xtl 11) 

where En is some unpaty representation of the nth class of homotopy of the covering 
group of the manifold. 

In the case of nou-relativistic panicles this problem has been studied by several 
authors [Z, 3,9-111 who have clarified the relation between the topological term a6 
which we can add to the Lagrangian and the multivalued character of the wavefmction. 

These aspects, together with a, rigorous mathematical treatment of quantum 
mechanics in multiply connected spaces 121, were essential for recent developments 
in fractional statistics and topological quantum field theories. 

However, despite the large amount of work in this area, there is no discussion, to 
our knowledge, of the motion oi relativistic panicles in multiply connected spaces. 
Probably this gap is due to the fact that only recently a complete undemanding of 
the quantization of the relativistic particle in terms of path integrals was reached. The 
crucial point is that the reparametrization invariance makes the path integral non-trivial 
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and the Faddeev-Popov [I?] or Batalin-Fradkin-Vilkovisky [ 131 technque must 
necessarily be used. 

Technically the problem of quantization of a generally covariant theory has to deal 
with the trouble of how to fix the gauge. The gauge fixing, as was discussed some time 
ago hy Teitelboim [14], must be consistent with the complete Exation of the gauge 
parameters at the initial and final points of the trajectory. Therefore, in this class of 
theories, we are led naturally to non-canonical gauge choices, like the proper time gauge. 

The purpose of this paper is io discuss two examples involving free relaiivistlc 
particles moving on spaces with non-trivial topology using the path integral method. 
In particular, the analogous of the problem solved by Schulman [1,3] for a free 
non-relativistic particle moving on 2 space with ,he topology of a circ!e S’ will be 
solved explicitly in the proper tinle gauge. We will show that when we impose this 
topology the propagator of the relativistic particle is compactified from D to D - 1 
dimensjons generating a mass proportional to the inverse radius of the circle and 
proportional to a quantum phase. ’Ihis provides a new mechanism of dynamical mass 
generation by non-perturbative methods. 

We then consider the relativistic Aharonov- Bohm effect. We will present aprocedure 
which allow us to obtain an explicit expression for the propagator in momentum space. 
Finally we compare our results with the non-relativistic ones showing that the interfer- 
ence pattem is the same in both cases. 

Let us consider a relativistic particle with mass m in a D-dimensional spacetime 
described by the following action 

where N is the Lagrange mulliplier and 7t is the first class constraint defined by 

7t=f(p2+m2) (3) 

and P, is the momentum conjugated to A,.. 
The reparametrization invariance is given by the following transformations 

ax” = E P *  

W ” = O  

S N = i  

which leavc invariant the action (2) if at the endpoints we have 

(4) 

E ( t , )  = E ( t J  = 0. ( 5 )  

As has been discussed in [14] a gauge choice compatible with (4) is the proper time 
gauge 

N = O .  (6)  

To quantize the theory we will use the path integral formalism. The propagation 
amplitude for the particle to go from X, to X, is 
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The formal expression (7) must be evaluared specifying the boundary conditions, i.e. 
in this case the topology of S‘. 

Let us assume that the topology of S’ is imposed only in one of the coordi~mes, 
say X‘ Then we have the boundary conditions 

XO(t,) = x: 
X ’ ( r , ) =  XI ~ ‘ ( I J  = x:+2mnI (8) 

X’(1 , )  = x; x‘(l ,)=X; 

X”( I,! = x: 

where I = 2,. . . , D - 1, and I is the radius of the circle and n an kege r .  
The path integral (7) can now be evaluated explicitly. Notice that in (7) the factor 

a[&] states that only the zero mode ( N ( 0 ) )  of N ( t )  contributes to the path integral 
and therefore the functional measure 9N can he replaced by an ordinary measure 
dN(0) The Integration limits for ”0).  by cauaaiity requirements [14], is from 0 to 
m. The Euclidemized determinant det(-Jj) can be evaluated by using the (-function 
regularizatioz! after we impose that the eigenfunctious of -3: vanish at the endpoints 
of the trajectory+. the result being det(-J:) = A1 = t2 - 1, 

Then (7) becomes 

where T =  N(0)AI. In (9) we added a lower index n to G which means that G.[X2,  X,] 
is the propagation amplitude for the nth class of homotopy. 

If we now write P”Xu as (d/df)(P”X,)-P“X, and we integrate on X ,  we get a 
factor of S[PJ which states that the momentum is conserved and allom the functional 
integral in P, to become an ordinary integral. 

Using the boundary conditions (8) in order to evaluate the surface term, we get 
that (9) becomes 

d D P  exp(iP”AX,+ZinlP,) - 

where the factor ie was introduced to guarantee the convergence of (9) 
Using (1) we obtain the complete propagator as 

dDP exp(iP”AX,+tinfP,) 
pZ+ m2 -ie 

Following the arguments presented by Schulman [I] the E. can be easiIy obtained 
by observing that (11) depends only on the difference X , - X , ,  and so it is easy to 
shcw that E. =e’”‘, where 6 is a phase whose origin is strictly quantic and induced 

‘ I l l is  har a nalural explanation ID the BFV formalism In fan to tmpose that the cigenfunnions of -3: 
vanish at the endpinis ofthe trajectory IE equivalent to the imposition ofhomogeneous boundaryeonditioor 
for the ghom 



L662 Lene; to the Editor 

by the non-trtvtal topology of the coordinate X ’ i .  Consequently (11)  is 

where now p = 0,2, . . . , D - I Equation (12) is the propagator for a panicle of mass 
1’= m2+ 6’/(2d)’ moving in a ( D -  I)-dimensional spacerime with trivial topology 
Therefore, by imposing a non-trivial topology in one of !he spatial coordinates of the 
D-dimensional spacetime we generate a compactification to D - 1 dimensions. This 
has no anaiogy with the non-relativistic case. It is also not analogous to the Cremmer- 
Scherk 1151 compactification since our results are denved from a quantum phase S 
and in this sense it is not equivalent to the compactification mechanism of the 
Kaluza-Klein theones [161 or smng theories 1171. It also gives a new non-perturhative 
mechanism of mass generation It would he very interesting to extend these ideas to 
quantum field theories$ 

We now consider the Aharonov-Bohm effect. This IS a two-dimensional situation 
where the electron moves in a multiply connected space due to the presence of a 
cylinder of infinite length filled with a magnetic field. The relativistic effects should 
be observable by incieasing the velocity of the electron. However, it seems that there 
is no experimental inveqtigation in this direction [20]. 

Topologically speaking the situation described in figure 1 IS not the most general 
possible since the electrons can follow other paths, e 6. going around the cylinder (see 
figure 2), and the problem is how to incorporate this into the path integral. 

In  principle it would be possible to extend ths method developed by Inomota-Singh 
[21] and Gerry-Singh [22] to solve the non-relativistic Aharonov-Bohm effect using 
the path in:egral However, it seems more convenient to write directly the path integral 
for the relativistic problem and to factorize the corresponding integral in its space and 
time components (regarding the position vector X-1. 

screen 

swrce 

Figilre 1. 

___ 
t Here 6 is a quantum phase that depends on how the ringuldnty IS constructed, e g if ths  singulsnly is 
constructed with an infinite rolenoid filled with a magnetrc field (as m the Aharonov-Bohm efiect) thts 
phase can be interpreted as the magnetic Run 
*The lttereture about quantum field theories in multiply connected spacer is very rertnned Perhaps the 
firs paper on this subject IS duc to Dowker [4]. More recenlly non-Abelian gauge theoner on S‘ and S‘ 
viere shown to have a dynamical mas. gtneration at the one loop level [IS], the $*me as that occurnng in 
the Schwinger model [19] 
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source 

n.0 

Figure 2. 

The integral in X' can be solved e a d y  and the spatial integrals can be evaluated 
by using polar coordinates (see figure 3) as is done in [21] and [2?].  Then, the formal 
path integral for the nth class of homotopy in the proper time gauge has the following 
form 

G,[X,, X , ]  = 9N9X'de t (  N j - ' S [ N ]  det(N3;) J 

The amplitude (13) is a Lagrangian expression. The factor det(N-') has been 
incorporated to make the functional measure invariant under reparalfetrizations. It is 
aiso easy to see, by using the i-function regularization, that det(NJ;) IS factonzable 
and therefore the factors det(N-') and det(N) cancel among themselves As before 
we have det(-Jj) 7 At 

The factor 6 [ N ]  allows us to replace the path Integral In N by an ordinary integrdl 
in N ( 0 )  with integration limits from 0 to m. Then (13) becomes 

x \ 9'X exp(i 1,; dr&). (14) 

To solve the integrals in Xu and X we consider that they are formally equal to the 
integrals for the non-relativistic particle in one and two dimensions with mass m = 
N(O)-'. So the X" integral is simply 

-i(AX,,)- (h)''' T '>- 
solrrce screen 

(15) 
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The X integral IS more complicated because we have to take into account that the 
panicle can go around the cylinder. 'This can he done and we refer to the papers [21] 
and 1221 for details (see also C231). The result for the integral (14) is 

where + is the angle difference between R and R' (see figure 2) and 4A1 is the modified 
Ressel function. 

Following the sxme arguments ured earlier to determine En in (1) we obtain the 
complete propagator 

where in this case the phase is a = e @ ,  where 6 is the magnetic flux and e is the 
electric charge. In (16) we made use of the identity 

Z,,(IX) = (i)"J,(x). 

Equation (16) can also he written explicitly in momentum space 

Making the change of variables T =  l/z, using the identity 

J"-I(x)+J"+l(x)= 2vxJ,(x) 

( v  arbitrary) and using the integral 1241 

lom dzz-' e"/'J,(pz) = 2 J u ( & $ ) K m ( a )  Re(a) > 0, p > 0 

it follows that (16) has the following form 

+ 4" ?ul+,(" (18) 

with p=8- i (P*+m2) .  
We have formulated the path integral quantization of 2 relativistic particle on a 

spacetime with non-trivial topology and written explicitly expressions for the propa- 
gators. For the free relativistic particle we have found a new dynamical non-perturhative 
mechanism of mass generation and it would be very interesting to find an analogous 
mechanism in quantum field theories. 
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We aiso discussed the relativistic Aharonov-Bohm effect and calculated the propa- 
gator. We remark that its form is the same as the non-relativistic one. If we write 

a 

G[x, ,  x,] = (-iP+=l exp(-i(n +a)+)en+mi (19) 
"=-_ 

we recover the relativistic propagator (17) for 

whiie for the non-relativistic case 1231, 

where T is the time that the particle takes to go from X, to X , .  
This fact shows that we have a universal form for the propagator of the Aharonov- 

Bohm effect. If we had considered the relativistic spinning particle, for example, only 
the factor fin+-l in (19) would change. If we now apply the Poisson summation formula 
to (19) and make a change of variables [25] we can rewrite (19) as 

where 

so that all dependence on the flux @ is in the exponential factor in (22). 'This means 
then that the interference patcem will he the same whichever particle we take, relativistic, 
spinning particle, etc. The interference pattem ofthe Aharonov-Bohm effect is universal 
since it depends only on the magnetic flux. 

Of course, this requires a note of caution, in fact, recently Hagen [26] has suggested 
that the spin could modify the inteference pattem if the initial beam of particles is 
polanzed. (Another denvation of this result based on the use of the conservation of 
helicity is given in [27] ) We also assumed that the cylinder is infinite in length but it 
is known that a finite cylinder changes the usual results 1281. 

JG was partially supported by MEC-CICM. 
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